Modern Methods for Solving Engineering Problems: Numerical Methods, Optimization Techniques and Simulation

Analyse und Optimierung von Mehrkörpersystemen

Maritime Technology and Engineering includes the papers presented at the 2nd International Conference on Maritime Technology and Engineering (MARTECH 2014, Lisbon, Portugal, 15-17 October 2014). The contributions reflect the internationalization of the maritime sector, and cover a wide range of topics: Ports; Maritime transportation; Inland navigation.

The application of numerical optimization techniques to a travel forecasting problem

Primarily designed as a text for the postgraduate students of mechanical engineering and related branches, it provides an excellent introduction to optimization methods—the overview, the history, and the development. It is equally suitable for the undergraduate students for their electives. The text then moves on to
familiarize the students with the formulation of optimization problems, graphical solutions, analytical methods of nonlinear optimization, classical optimization
techniques, single variable (one-dimensional) unconstrained optimization, multidimensional problems, constrained optimization, equality and inequality
constraints. With complexities of human life, the importance of optimization techniques as a tool has increased manifold. The application of optimization
techniques creates an efficient, effective and a better life. Features ◆ Includes numerous illustrations and unsolved problems ◆ Contains university questions ◆ Discusses the topics with step-by-step procedures.

Modern engineering processes and tasks are highly complex, multi- and interdisciplinary, requiring the cooperative effort of different specialists from engineering,
mathematics, computer science and even social sciences. Optimization methodologies are fundamental instruments to tackle this complexity, giving the possibility
to unite synergistically team members’ inputs and thus decisively contribute to solving new engineering technological challenges. With this context in mind, the
main goal of Engineering Optimization 2014 is to unite engineers, applied mathematicians, computer and other applied scientists working on research,
development and practical application of optimization methods applied to all engineering disciplines, in a common scientific forum to present, analyze and
discuss the latest developments in this area. Engineering Optimization 2014 contains the edited papers presented at the 4th International Conference on
Engineering Optimization (ENGOPT2014, Lisbon, Portugal, 8-11 September 2014). ENGOPT2014 is the fourth edition of the biennial “International
Conference on Engineering Optimization”. The first conference took place in 2008 in Rio de Janeiro, the second in Lisbon in 2010 and the third in Rio de
Janeiro in 2012. The contributing papers are organized around the following major themes: - Numerical Optimization Techniques - Design Optimization and
Inverse Problems - Efficient Analysis and Reanalysis Techniques - Sensitivity Analysis - Industrial Applications - Topology Optimization For Structural Static and
Dynamic Failures - Optimization in Oil and Gas Industries - New Advances in Derivative-Free Optimization Methods for Engineering Optimization -
Optimization Methods in Biomechanics and Biomedical Engineering - Optimization of Laminated Composite Materials - Inverse Problems in Engineering
Engineering Optimization 2014 will be of great interest to engineers and academics in engineering, mathematics and computer science.

Numerical Optimization Techniques for Engineering Design

Einsatz deterministischer Optimierungsverfahren bei der Vorauslegung hochbelasteter Turbomaschinen

Numerical optimization techniques are a valuable tool which can be utilized in computational models of knee prostheses to determine optimum design features
subject to a desired stress condition; minimum muscle exertion to enable knee flexion; and an improved prosthesis-bone interface subject to desirable bone
remodeling behavior. It presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the
growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. It has been made to
present some modern and non-conventional applications of numerical optimization in the areas of science and engineering. It emphasis on practical methods, as
well as the extensive illustrations and is user-friendly. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and
business. It also serves as a handbook for researchers and practitioners in the field. It is a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side. Students, and experts and all associated with this field will benefit alike from this book.

Maritime Technology and Engineering

Dieses Lehrbuch stellt die unterschiedlichen Leichtbaukonzepte anhand einfacher eindimensionaler Strukturen in sehr verständlicher Weise dar und ermöglicht einen leichten Einstieg in das Thema. Es werden nachvollziehbare Informationen und Hinweise zur Werkstoffauswahl und geometrischen Gestaltung von Bauteilen gegeben.

Optimization Concepts and Applications in Engineering

Many important application problems in engineering can be formalized as nonlinear optimization tasks. However, numerical methods for solving such problems are brittle and do not scale well. For example, these methods depend critically on choosing a good starting point from which to perform the optimization search. In high-dimensional spaces, numerical methods have difficulty finding solutions that are even locally optimal. The objective of this thesis is to demonstrate how machine learning techniques can improve the performance of numerical optimizers and facilitate optimization in engineering design. The machine learning methods have been tested in the domain of 2-dimensional structural design, where the goal is to find a truss of minimum weight that bears a set of fixed loads. Trusses are constructed from pure tension and pure compression members. The difference in the load-bearing properties of tension and compression members causes the gradient of the objective function to be discontinuous, and this prevents the application of powerful gradient-based optimization algorithms in this domain. In this thesis, the approach to numerical optimization is to find ways of transforming the initial problem into a selected set of subproblems where efficient, gradient-based algorithms can be applied. This is achieved by a three-step "compilation" process. The first step is to apply speedup learning techniques to partition the overall optimization task into sub-problems for which the gradient is continuous. Then, the second step is to further simplify each sub-problem by using inductive learning techniques to identify regularities and exploit them to reduce the number of independent variables. Unfortunately, these first two steps have the potential to produce an exponential number of sub-problems. Hence, in the third step, selection rules are derived to identify those sub-problems that are most likely to contain the global optimum. The numerical optimization procedures are only applied to these selected sub-problems. To identify good sub-problems, a novel ID3-like inductive learning algorithm called UTILITYID3 is applied to a collection of training examples to discover selection rules. These rules analyze the problem statement and identify a small number of sub-problems (typically 3) that are likely to contain the global optimum. In the domain of 2-dimensional structural design, the combination of these three steps yields a 6-fold speedup in the time required to find an optimal solution. Furthermore, it turns out that this method is less reliant on a good starting point for optimization. The methods developed in this problem show promise of being applied to a wide range of numerical optimization problems in engineering design.

Numerical Engineering Optimization

Der Stahlbau-Kalender ist ein Wegweiser für die richtige Berechnung und Konstruktion im gesamten Stahlbau, er dokumentiert und kommentiert verlässlich

MODERN METHODS FOR SOLVING ENGINEERING PROBLEMS: NUMERICAL METHODS- OPTIMIZATION TECHNIQUES AND SIMULATION UNIVERSITY OF MICHIGAN ENGINEERING SUMMER CONFERENCE

This study aid on numerical optimization techniques is intended for university undergraduate and postgraduate mechanical engineering students. Optimization procedures are becoming more and more important for lightweight design, where weight reduction can, for example in the case of automotive or aerospace industry, lead to lower fuel consumption and a corresponding reduction in operational costs as well as beneficial effects on the environment. Based on the free computer algebra system Maxima, the authors present procedures for numerically solving problems in engineering mathematics as well as applications taken from traditional courses on the strength of materials. The mechanical theories focus on the typical one-dimensional structural elements, i.e., springs, bars, and Euler–Bernoulli beams, in order to reduce the complexity of the numerical framework and limit the resulting design to a low number of variables. The use of a computer algebra system and the incorporated functions, e.g., for derivatives or equation solving, allows a greater focus on the methodology of the optimization methods and not on standard procedures. The book also provides numerous examples, including some that can be solved using a graphical approach to help readers gain a better understanding of the computer implementation.

Numerical Optimization & Swarm Intelligence for Optimization

Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB are featured as learning and teaching aids. Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable. Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems. Introduction to MATLAB Optimization Toolbox Practical design examples introduce students to the use of optimization methods early in the book. New example problems throughout the text are enhanced with detailed illustrations. Optimum design with Excel Solver has been expanded into a full chapter. New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses.
Dieses Buch behandelt Modellbildung, Sensitivitätsanalyse und Optimierung mechanischer Mehrkörpersysteme in Hinblick auf rechnergestützte Methoden.

Numerical Optimization Techniques for Engineering Design

In this book we attempt to apply swarm intelligence with numerical optimization techniques to solve multiobjective engineering problems. So, a hybrid algorithm that combines both of the trust region algorithm (numerical optimization technique) and particle swarm optimization (swarm intelligence method) to solve multiobjective optimization problems is presented. In addition, the new algorithm implemented to solve multiobjective engineering component design problems and the environmental economic dispatch problem to demonstrate the superiority of our approach and confirms its potential to solve engineering applications.

Change is one of the most significant parameters in our society. Designers are amongst the primary change agents for any society. As a consequence design is an important research topic in engineering and architecture and related disciplines, since design is not only a means of change but is also one of the keystones to economic competitiveness and the fundamental precursor to manufacturing. The development of computational models founded on the artificial intelligence...
paradigm has provided an impetus for much of current design research—both computational and cognitive. These forms of design research have only been carried out in the last decade or so and in the temporal sense they are still immature. Notwithstanding this immaturity, noticeable advances have been made both in extending our understanding of design and in developing tools based on that understanding. Whilst many researchers in the field of artificial intelligence in design utilise ideas about how humans design as one source of concepts there is normally no attempt to model human designers. Rather the results of the research presented in this volume demonstrate approaches to increasing our understanding of design as a process.

Numerical Methods, Optimization Techniques and Process Simulation for Engineers

Engineering Optimization

The book of Professor Evtushenko describes both the theoretical foundations and the range of applications of many important methods for solving nonlinear programs. Particularly emphasized is their use for the solution of optimal control problems for ordinary differential equations. These methods were instrumented in a library of programs for an interactive system (DISO) at the Computing Center of the USSR Academy of Sciences, which can be used to solve a given complicated problem by a combination of appropriate methods in the interactive mode. Many examples show the strong as well the weak points of particular methods and illustrate the advantages gained by their combination. In fact, it is the central aim of the author to point out the necessity of using many techniques interactively, in order to solve more difficult problems. A noteworthy feature of the book for the Western reader is the frequently unorthodox analysis of many known methods in the great tradition of Russian mathematics. J. Stoer PREFACE Optimization methods are finding ever broader application in science and engineering. Design engineers, automation and control systems specialists, physicists processing experimental data, economists, as well as operations research specialists are beginning to employ them routinely in their work. The applications have in turn furthered vigorous development of computational techniques and engendered new directions of research. Practical implementation of many numerical methods of high computational complexity is now possible with the availability of high-speed large-memory digital computers.

Stochastic Programming

Machine Learning in Engineering
Numerical Optimization Techniques for Engineering Design

Engineering Optimization 2014

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamental to statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimates, Markov decision processes, Programming methods used to optimize monitoring of patients in hospitals, Derivation of the Neyman-Pearson lemma, The search for optimal designs, Simulation of a steel mill. Suitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics. Key Features * Covers optimization from traditional methods to recent developments such as Karmarkar's algorithm and simulated annealing. * Develops a wide range of statistical techniques in the unified context of optimization. * Discusses applications such as optimizing monitoring of patients and simulating steel mill operations. * Treats numerical methods and applications. Includes exercises and references for each chapter. * Covers topics such as linear, nonlinear, and dynamic programming, variational methods, and stochastic optimization.

Numerical Methods, Optimization Techniques and Process Simulation for Engineers

This volume includes contributions on: field theory and advanced computational electromagnetics; electrical machines and transformers; optimization and interactive design; electromagnetics in materials; coupled field and electromagnetic components in mechatronics; induction heating systems; bioelectromagnetics; and electromagnetics in education.

Numerical Optimization Techniques

This study aid on numerical optimization techniques is intended for university undergraduate and postgraduate mechanical engineering students. Optimization procedures are becoming more and more important for lightweight design, where weight reduction can, for example in the case of automotive or aerospace industry, lead to lower fuel consumption and a corresponding reduction in operational costs as well as beneficial effects on the environment. Based on the free computer algebra system Maxima, the authors present procedures for numerically solving problems in engineering mathematics as well as applications taken from traditional courses on the strength of materials. The mechanical theories focus on the typical one-dimensional structural elements, i.e., springs, bars, and Euler–Bernoulli beams, in order to reduce the complexity of the numerical framework and limit the resulting design to a low number of variables. The use of a
computer algebra system and the incorporated functions, e.g., for derivatives or equation solving, allows a greater focus on the methodology of the optimization methods and not on standard procedures. The book also provides numerous examples, including some that can be solved using a graphical approach to help readers gain a better understanding of the computer implementation.

Numerical Optimization with Application

Vieweg Handbuch Kraftfahrzeugtechnik

Artificial Intelligence in Design ’96

In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.

Electromagnetic Fields in Electrical Engineering

Thermal systems play an increasingly symbiotic role alongside mechanical systems in varied applications spanning materials processing, energy conversion, pollution, aerospace, and automobiles. Responding to the need for a flexible, yet systematic approach to designing thermal systems across such diverse fields, Design and Optimization of Thermal

Numerical Optimization in Engineering and Sciences

Technology/Engineering/Mechanical Helps you move from theory to optimizing engineering systems in almost any industry Now in its Fourth Edition, Professor Singiresu Rao's acclaimed text Engineering Optimization enables readers to quickly master and apply all the important optimization methods in use today across a broad range of industries. Covering both the latest and classical optimization methods, the text starts off with the basics and then progressively builds to advanced principles and applications. This comprehensive text covers nonlinear, linear, geometric, dynamic, and stochastic programming techniques as well as more.
specialized methods such as multiobjective, genetic algorithms, simulated annealing, neural networks, particle swarm optimization, ant colony optimization, and fuzzy optimization. Each method is presented in clear, straightforward language, making even the more sophisticated techniques easy to grasp. Moreover, the author provides case examples that show how each method is applied to solve real-world problems across a variety of industries. Review questions and problems at the end of each chapter engage readers in applying their newfound skills and knowledge. Examples demonstrate the use of MATLAB® for solving different types of practical optimization problems. References and bibliography at the end of each chapter explore topics in greater depth. Answers to Review Questions available on the author's website help readers test their understanding of the basic concepts. With its emphasis on problem-solving and applications, Engineering Optimization is ideal for upper-level undergraduates and graduate students in mechanical, civil, electrical, chemical, and aerospace engineering. In addition, the text helps practicing engineers in almost any industry design improved, more efficient systems at less cost.

Optimization Techniques in Statistics

This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods, and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.

Stoff- und Formleichtbau

The papers in this volume focus on the following topics: design optimization and inverse problems, numerical optimization techniques, efficient analysis and reanalysis techniques, sensitivity analysis and industrial applications. The conference EngOpt brings together engineers, applied mathematicians, and computer scientists working on research, development, and practical application of optimization methods in all engineering disciplines and applied sciences.

Design and Optimization of Thermal Systems

Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization Drawing on extensive research and experience, this timely reference brings together numerical optimization methods for fluid machinery and its key industrial applications. It logically lays out the context required to understand computational fluid dynamics by introducing the basics of fluid mechanics, fluid machines, and their components. Readers are then introduced to single and multi-objective optimization methods, automated optimization, surrogate models, and evolutionary algorithms. Finally, design approaches and applications in the areas of pumps, turbines, compressors, and other fluid machinery systems are clearly explained, with special emphasis on renewable energy systems. Written by an international team of leading experts in the field, this book brings together optimization methods using computational fluid dynamics for fluid machinery in one handy reference. Features industrially important applications, with key sections on renewable energy systems. Design Optimization of Fluid Machinery is an essential guide for graduate students, researchers, engineers working in fluid machinery and its optimization methods. It is a
OPTIMIZATION METHODS FOR ENGINEERS

Numerical Optimization Techniques

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Numerical Optimization Techniques

A useful balance of theory, applications, and real-world examples The Finite Element Method for Engineers, Fourth Edition presents a clear, easy-to-understand explanation of finite element fundamentals and enables readers to use the method in research and in solving practical, real-life problems. It develops the basic finite element method mathematical formulation, beginning with physical considerations, proceeding to the well-established variation approach, and placing a strong emphasis on the versatile method of weighted residuals, which has shown itself to be important in nonstructural applications. The authors demonstrate the tremendous power of the finite element method to solve problems that classical methods cannot handle, including elasticity problems, general field problems, heat transfer problems, and fluid mechanics problems. They supply practical information on boundary conditions and mesh generation, and they offer a fresh perspective on finite element analysis with an overview of the current state of finite element optimal design. Supplemented with numerous real-world problems and examples taken directly from the authors' experience in industry and research, The Finite Element Method for Engineers, Fourth Edition gives readers the real insight needed to apply the method to challenging problems and to reason out solutions that cannot be found in any textbook.

Design Optimization of Fluid Machinery

The Finite Element Method for Engineers

Proceedings of the 2nd GAMM/IFIP-Workshop on "Stochastic Optimization: Numerical Methods and Technical Applications" held at the Federal Armed Forces University, Munich, Neubiberg/München, Germany, June 15-17, 1993